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Introduction:  Tidal heating is an important en-

ergy source for several solar system bodies, and there 
is a wide-spread perception that the pattern of surface 
heat flow is diagnostic of internal structure. We wish 
to clarify that situation.  

Our analysis depends upon two important assump-
tions: First, that heat transport is dominated by conduc-
tion. Second, that the body can be modeled by a se-
quence of spherically symmetric layers, each with a 
linear visco-elastic rheology. Under these assumptions, 
surface heat flow patterns in tidally dominated satel-
lites will reflect radially integrated dissipation patterns. 
For synchronously rotating satellites with zero obliq-
uity, this pattern depends quite strongly on orbital ec-
centricity but relatively little on purely radial varia-
tions in internal structure. The total amount of heat 
generated within the body does depend sensitively on 
internal structure, but the spatial pattern is rather in-
sensitive to structure, especially at low orbital eccen-
tricities. 

Finite obliquity can complicate the spatial and tem-
poral pattern of dissipation. Motion of the tidal bulge 
north and south of the equator causes an additional 
strain field which interacts with the patterns due to 
radial and longitudinal tidal components. The radial 
and longitudinal patterns repeat once per anomalistic 
cycle and the latitudinal pattern follows the nodical 
cycle. As the nodal line advances and the apsidal line 
regresses, these tidal components form changing pat-
terns of dissipation. Though tidal evolution will tend to 
damp initially large obliquity values, they are not ex-
pected to vanish entirely, and thus temporal variations 
in tidal heat generation might be important. 

Calculation Strategies:  Calculating the rate of 
tidal dissipation for a specified internal structure model 
can be done in at least two different ways. The clearest 
approach, conceptually, is to calculate stress, strain, 
and strain rate at each point within the body, and aver-
age the product of stress and strain-rate over the period 
of tidal forcing [1,2]. That averaged product yields the 
volumetric dissipation rate. This approach is very gen-
eral, and allows radial dissection of the dissipation 
pattern. However, the expressions obtained can be 
quite complex in form, and the global properties are 
not evident by inspection. 

If the radial integral of this local dissipation rate is 
sought, an alternative approach [3,4] is to take the 
product of the imposed tidal potential and the time 

derivative of the induced potential, due to deformation, 
and average that quantity over the forcing period. With 
appropriate scaling, this potential product also yields 
the expected surface heat flow and is much easier to 
implement. The principal advantage of this approach, 
in the current context,  is that it makes the dependence 
on internal structure much easier to see. 

The degree 2 tidal potentials, both imposed and in-
duced, can each be written as a sum of 3 spherical 
harmonic basis functions. The dissipation pattern, 
which is constructed from the time average of the 
product of the potentials, has 9 separate terms in the 
initial product, but only 4 of them survive the time 
averaging. Each of the surviving terms can be written 
as a sum of spherical harmonics of even degree l (0, 2, 
or 4), even order m (0, 2, or 4), and even parity (cosine 
in longitude). The resulting dissipation pattern has 3 
orthogonal planes of reflection symmetry, with the 
equator and prime meridian delineating two of them.  

 
Spatial Pattern and Internal Structure:  
The expected pattern of surface heat flow from 

tidal dissipation, for the case of zero obliquity, can be 
written as 

∑ ∑
=

∞

=

=
4

1 1
2 ),()(),(),( ]Im[

i p
ii eppn HkpFVW φθφθ  

where the dimensional multiplier is V = 5 n2 R3 / 4πG, 
and θ is latitude, φ is longitude, n is orbital mean mo-
tion, e is orbital eccentricity, R is the satellite mean 
radius, G is the gravitational constant, and k2 is the 
tidal Love number, which parameterizes the resistance 
to tidal deformation. The spatial pattern is represented 
by the four basis functions Fi, each of which is a sum 
of spherical harmonics of even degree and even order. 
The temporal variations in potential are represented by 
the functions Hi, which are functions of eccentricity 
and frequency.  

Written in this form, it may still not be evident that 
the dissipation pattern can be factored into a product of 
a global value, which depends on  eccentricity and 
internal structure, and a spatial template, which de-
pends on eccentricity, but is very nearly independent 
of structure. To make that factorization evident, we 
must examine the relationship between internal struc-
ture and the form of the tidal Love number.  

In the Laplace transform domain, the imaginary 
part of the complex Love number for a radially strati-
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fied Maxwell visco-elastic body can be written in the 
form [5] 
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where ω is the forcing frequency and the poles sj and 
residues rj depend on the internal structure. For a ho-
mogeneous incompressible body there is a single re-
laxation mode, with associated pole and residue. Each 
density jump in the interior will introduce an addi-
tional buoyancy mode, and each jump in Maxwell re-
laxation time (change in either viscosity or rigidity) 
will introduce two additional transition modes [6, 7]. 
Thus, for a general L-layered body, one would antici-
pate a total of N = 3L - 2 modes. 

The key observation is that each of the visco-
elastic relaxation modes makes a formally identical 
contribution to the dissipation pattern. If the temporal 
factors in the tidal potential are truncated at the first 
order in orbital eccentricity then the normalized heat 
flux, defined as the ratio of heat flux at a surface point 
divided by the global average value, will be the same 
for a homogeneous body, with one relaxation mode, as 
for a body with arbitrarily complicated radial structure. 
Each of the relaxation modes contributes identically to 
the normalized pattern.  

When higher order terms in the Taylor expansion 
in eccentricity are included, as would be necessary for 
higher eccentricity orbits, the independence of dissipa-
tion pattern on structure is destroyed. However, even 
for reasonably high eccentricity values, the depend-
ence on structure is still rather slight.  

Implications:  This issue might seem to be entirely 
academic except for the fact that there is a  wide-
spread perception that the pattern of dissipation de-
pends on internal structure. If that were true, then ob-
servations of heat flux on Io, for example, might allow 
discrimination between various proposed internal vis-
cosity patterns. 

The perception that tidal dissipation patterns are 
sensitively dependent on internal structure appears to 
have originated from a series of important papers 
[8,9,10] in which various aspects of dissipation within 
Io were being explored.  Figures 8 and 10 of [9] have 
been frequently used as end-member patterns for com-
parison to observations of inferred heat flow from Io 
[11,12]. Figure 8 is for a homogeneous model, and it 
yields maxima at the poles and minima at the sub- and 
anti-Jovian points. Figure 10 is for a model in which 
dissipation mainly occurs in a shallow asthenosphere. 
It has maxima near the equator and vanishing heat 
flow at the poles.  

Limitations: The arguments presented above are 
strictly applicable only to bodies in which the material 
properties (density, rigidity, viscosity) are functions of 
radius alone. Any lateral variations in material proper-
ties will invalidate the invariance of the dissipation 
pattern. For instance, tidal dissipation in the Earth, 
which mainly occurs in the oceans, exhibits a complex 
pattern, as it is a strong function of ocean depth and 
density stratification [13].  Furthermore, dissipation is 
assumed to occur in a material that can be modeled 
with a linear visco-elastic rheology.  Strictly, conduc-
tion is assumed to dominate heat transport within the 
body, neglecting the effect of a convecting molten 
layer substantially altering the dissipation pattern 
[9,14]. 

Temporal Variations: If the obliquity of a syn-
chronous rotator is non-zero, there will be relatively 
long period variations in tidal dissipation rate and pat-
tern. The obliquity of Io is certainly small, but likely 
non-zero. Assuming that tidal dissipation has driven it 
to a Cassini state, the obliquity can be estimated to be 
4.1 10-5 radian. [15]. In addition to the short period 
tides associated with the orbital period, there is also a 
family of long period tides whose dominant period is 
set by the relative motions of the apsidal and nodal 
lines. This period is 3.35 years for Io [16]. It is inter-
esting to note that Loki, the largest volcano of Io ap-
pears to have periodic heat output with a period of 540 
days [17], very nearly ½ of this tidal period, as would 
be expected if tidal effects were driving that variation. 
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